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This paper presents a scheme to improve the private database query protocols proposed by Jakobi and Gao respectively. By 
randomly choosing permutation functions to generate auxiliary strings, we reduce the length of the raw key from kN  to N , 
which makes a significant decrease in communication complexity and saves quantum resources. Furthermore, the whole 
protocol can avoid being restarted when the communication fails due to the user obtaining no bit in the finial key. The 
communicating parties can obtain a new finial key and successfully achieve communication by randomly rechoosing 
permutation functions. This is quite different from the previous protocols. The detailed analysis shows that our protocol can 
provide better communication complexity without loss of security and privacy. Compared with the previous protocols, our 
protocol is more practical and flexible. 
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1. Introduction 
 
A Symmetrically Private Information Retrieval (SPIR) 

[1] protocol allows a database user to obtain information 
from a database in a manner that prevents the database 
from knowing which data is retrieved and the user from 
obtaining extra information from database besides what 
she or he wants to retrieve. It is a generalization of the 
private information retrieval problem (PIR) [2] which 
deals with user privacy alone. To make the whole problem 
more simple, the database which is in Bob’s possession is 
modeled as an N -bit string and the user, Alice, wants to 
obtain the thi  bit in the string, such that i remains 
unknown to Bob. She knows in advance the address of that 
bit in Bob’s database. 

It has attracted much attention both in computer 
science and in quantum information [3,4]. Classically, 
there are several schemes for PIR [5-8] and SPIR [1]. 
Gertner [1] exhibited quite efficient share-randomness 
SPIR schemes. However, the necessity of shared 
randomness among multi-servers is a significant drawback, 
since information-theoretic security requires new shared 
randomness for each application of the scheme. User and 
data privacy are apparently in conflict: the most 
straightforward way to obtain user privacy is for Alice to 
have Bob send her the entire database, leading to no data 

privacy whatsoever. Conversely, techniques for 
guaranteeing the server’s data privacy typically leave the 
user vulnerable. So far, no efficient solutions in terms of 
communication complexity [9] are known for SPIR. The 
communication complexity is measured by the number of 
bits transmitted between the user and the server per query. 
One might hope that quantum mechanics could solve this 
dilemma. Several quantum symmetrically private 
information retrieval (QSPIR) schemes [10-13] were 
proposed. The private information in Ref. [10] and [13] is 
directly encoded in qubits and in the phase respectively. 
Perfect though they are in theory, the two protocols are 
difficult to implement because when large database is 
concerned the dimension of the oracle operation will be 
very high. 

Jakobi et al. [14] recently proposed a new protocol 
based on quantum key distribution (QKD), which is the 
first practical quantum private query protocol and quite 
different from the previous ones. The protocol can be 
divided into two phases: the raw key distribution phase 
and the post-processing phase. In the raw key distribution 
phase, The SARG04 QKD scheme [15] is utilized to 
generate asymmetric key served as a raw key between 
Alice and Bob. In the post-processing phase, the raw key 
string is diluted to generate the finial key which is used to 
encrypt the whole database after a relative shift. By 
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introducing parameter θ  which determines the sent 
photons in the first phase, Gao et al. [16] extended Jakobi 
et al’s protocol [14] to a general form. For simplicity, 
suppose that Jakobi et al’s protocol [14] and Gao et al’s 
protocol [16] are shortened as JQP and GQP respectively. 
The main idea underlying GQP is completely identical to 
JQP with the only difference that the sent photons are 
adjustable. 

In these two protocols, kN -bit raw key must be 
created in order to generate a diluted finial key in the 
post-processing phase. For example, when 

610=N , 6=k  will be appropriate in JQP. That means 
that the length of the created raw key must be 6106× . 
That is to say, the raw key string must be k  times longer 
than the database. The security parameter k  increases 
with the increase of N . Obviously, the value of the 
parameter k  affects the communication complexity. 
They can obtain a smaller k  and achieve lower 
communication complexity by choosing a smaller 

)4/0( πθθ <<  in GQP. However, the user privacy 
decreases with decreasing the parameter 

)2/0( πθθ << . Furthermore, if they pursue 1=k , 
θ  will be very small for large N . That will not only 
reduce the user privacy but also make its realization 
technically difficult. From this we know that we can not 
reduce the communication complexity effectively only by 
adjusting the value of θ . In a word, both JQP and GQP 
can achieve very good levels of privacy and security 
which relies on fundamental physical principles, but 
neither can provide a good communication complexity. 
Especially for a large database, the drawback greatly 
affects communication efficiency and its practical 
application. 

To achieve lower complexity and minimize the 
communication cost, we present an effective scheme in 
which pseudo-random strings generated by random 
permutation functions are cleverly used to dilute the raw 
key in the post-processing phase. We can achieve 1=k  
no matter how large the database is. The detailed analysis 
is given in the following sections. 

 
2. Review of GQP  
 
The basic idea of JQP [14] and GQP [16] is that it 

uses QKD in combination with adequate post-processing 

to generate an N -bit string fK  that serves as an 

oblivious key [17] for a database of N  bits.  For this 

purpose, the key fK must meet the following conditions: 
(1) Bob knows the key entirely; (2) Alice knows only a 

few bits of fK -ideally exactly one (database security); 
(3) Bob does not know which bits are known to Alice (user 
privacy). Bob adds database and key bit-wise with a 
relative shift chosen by Alice and sends her the encrypted 
database. The relative shift is needed in order to ensure 
that Alice’s bit of interest is encoded with an element of 

fK she knows, so that she can decipher the bit and thus 
receive the answer to her private query. 

Since GQP is a generalization of JQP, we will give a 
brief description of GQP and then present a technique to 
improve it. 

Step 1, Bob sends Alice a long random sequence of 

qubits (e.g., photons) which are in states 〉0| , 〉1| , 〉′0|  

and 〉′1| . States 〉0|  and 〉1|  code for 0, and states 

〉′0|  and 〉′1|  correspond to bit value 1. Here 

〉+〉=〉′ 1|sin0|cos0| θθ , 

.1|sin0|cos1| 〉−〉=〉′ θθ  

The parameter )2/,0( πθ ∈  can be selected 

continuously according to particular situations, which will 
be demonstrated below. 

Step 2, Alice measures each state in the basis 

}1|,0{| 〉〉=B  or }1|,0{| 〉′〉′=′B  basis at random. 

Obviously this measurement does not allow her to infer 
the value of the bit sent by Bob. 

Step 3, Alice announces what she has successfully 
detected; lost or not detected photons are disregarded. It 
does not allow Alice to cheat since she still has no 
information on the sent bit values and can’t tell which 
measurement result she wants. As a consequence, the 
protocol is completely loss-independent. 

Step 4, for each qubit that Alice has successfully 
measured, Bob announces one bit 0 or 1, where 0 
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represents the bit which is originally in the state 〉0|  or 
〉′0| , while 1 implies the qubit is 〉1|  or 〉′1| . 
Step 5, she interprets her measurement results of step 

4. According to the basis she has chosen and the result she 
has obtained, Alice can obtain the sent bit with a certain 
probability. For example, if 〉′0|  has been sent and 0 has 
been declared, Alice can rule out 〉0|  only if she has 
measured in the basis B  and obtained the result 〉1| . 
Then she can conclude that the state is 〉′0|  and the bit 
value is 1. As a result, direct measurement as under step 2 
will yield 2/sin 2 θ=p  of conclusive results and 

p−1  of inconclusive ones. Both conclusive and 
inconclusive results are kept. So Alice and Bob now share 
a raw key rK  which is known entirely to Bob and partly 
to Alice (she knows 2/sin 2 θ=p  of the whole).  

Step 6, they both execute postprocessing to the key. 
The raw key rK  must be of length Nk ×  (with k  
being a security parameter). By cutting it into k  
substrings of length N  and adding them bitwise, both 
parties generate an N -bit string of which Alice knows a 
few bits at most (ideally exactly one). 

Step 7, if Alice is left with no known bit after step 6, 
the protocol has to be restarted. The probability for this to 
occur can be kept small. 

Step 8, Alice will know at least one element of it after 
rK  has been established correctly. Suppose she knows 

the thj  bit f
jK  and wants to obtain the thi  bit of the 

database iX . In order to decrypt correctly Alice 
announces the number ijs −=  in advance to allow 
Bob to encode the database by bitwise adding fK , 
shifted by s . This will make sure that the bit in which 
Alice is interested is coded with a key element she knows 
so that the private query can be completed. 

They show that, the average number of the key bits 
Alice obtains can be located on any fixed value the users 
wanted for any database size by adjusting the value of θ. 
And the parameter k  is generally smaller (even 

1=k can be achieved) when θ < π/4, which implies lower 
complexity of both quantum and classical communications. 
The scheme is completely loss-resistant since the 
discarded bits contain no information about database or the 
finial key. It achieved good database security and high user 
privacy.  

 

3. The improved scheme  
 
The above protocol can be divided into two phases: 

the raw key distribution phase and the post-processing 
phase. Step 1 to 5 of the above protocol are similar with 
B92 QKD protocol [18]. This remains in this paper and 
only post-processing is modified.  

According to the above protocol, the raw key string 
must be k  times longer than the database. This means 
that Bob has to send at least Nk ×  photons to Alice. For 
a given N , we can achieve a smaller k  by choosing a 
smaller parameter θ . But, as discussed in Ref. [16], the 
smaller the parameter θ , the higher the probability with 
which Bob can correctly guess the address of Alice’s query. 
Furthermore, if they pursue 1=k , which means the 
optimal communication complexity in our protocol, θ  
will be very small for large N . This might make its 
realization technically difficult. Therefore, 1>k  is 
needed when N  is large in their protocol. From this we 
know that we can not effectively reduce the 
communication complexity only by adjusting the value  
of θ . 

On the other hand, the whole protocol has to be 
restarted if the finial key string is generated with no bit 
known for Alice. It, to a certain extent, also affects the 
efficiency of communication. 

To improve it, we present a simple technique in which 
permutations are cleverly used to generate new strings to 
dilute the raw key. The new protocol is described as 
follows. Step 1 to 5 are the same as those in GQD above. 

Step 6′ , when the created string is of length N , 
Bob stops sending photos. Let us denote the raw key as 

X . 
Step 7′ , Bob randomly chooses 1−t  different 

permutation functions )(XfY jj =  and announces 

them. Then they both perform these permutation functions 
on X  and obtain 1−t  auxiliary strings 

jY , 1,,1 −= tj L . They add bitwise the 1−t  auxiliary 

strings to the raw string and obtain a diluted finial key. In 
order to dilute the raw key effectively, these permutation 
functions should not be identical. This step is very 
important for this paper and the details can be seen in the 
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following security analysis. 
Step 8′ , if Alice is left with no known bit after step 

6′ , the whole protocol does not have to be restarted. They 
can return to step 7′ . By choosing randomly other 
permutation functions, they can generate new 1−t  

auxiliary strings ′
jY  and obtain a new diluted finial 

string. Otherwise, continue.  
Step 9′ , it is the same as step 8 in section 2 above. 
 
4. Discussion 
 
Apparently, compared to GQP, the stage of key 

distribution keeps unaltered and only post-processing 
phase is improved in our scheme. As discussed in JQP and 
GQP, Alice is always confronted with the problem of 
discriminating two non-orthogonal quantum states, and 
will hence always have incomplete knowledge on the raw 
key. This lack of information is subsequently further 
amplified by step 7′ . 

In JQP and GQP, we may regard the first N -bit 
substring as an object string, and the remaining 1−k  
substrings as auxiliary strings which are used to dilute the 
object string. So the inconclusive bits in the auxiliary 
strings play a key role in the whole process. As designed in 
JQP and GQP, the k  substrings are truly random. In our 
scheme, by performing different permutation functions 

jf  on the N -bit object string, we obtain 1−t  

permutated strings served as auxiliary strings. The 
permutated strings are pseudo-random. At first sight the 
permutated strings seem not good enough since they are 
not truly random. However, it should be noted that the 
core of the post-processing is how to dilute the key. 
Compared with the specific value of a conclusive bit in the 
finial key, we are more concern about how many bits have 
been diluted, which is very important for our protocol. In 
fact, the following detailed analysis can show that it does 
work well. 

On one hand, the amount of information Bob can 
obtain about the finial key in our protocol is the same as 
that in GQP. Bob knows which bits in the auxiliary strings 
will contribute a bit in the finial key. This is the same as 
that in GQP, there is only difference that a raw bit will 

contribute t  finial key bits. Although he knows that the 
relationship exists among the bits in the finial key. Since 
he can not conclude a raw bit that Alice knows without 
any error due to Alice’s random measurement, he can not 
know precisely the corresponding bit in the finial key. 

 On the other hand, the amount of information Alice 
can obtain from the finial key in our protocol is almost the 
same as that in GQP. As the bits in the raw object string 

are random, no matter what the permutation functions jf  

are, Alice can not obtain more information about each bit 
from the permutated strings. Every inconclusive bit in the 
permutated auxiliary strings will also make the 
corresponding bit in the finial key inconclusive. That is to 
say, for Alice, the degree of uncertainty about the 
inconclusive bits in the finial key in both protocols is 

almost the same. Owing to the permutation functions jf  

which are randomly chosen by Bob, the object string can 
also be well diluted in our protocol. 

  Following the improved protocol, after adding 
bitwise the permutated strings to the object string, Alice 

will on average know tNn )
2

sin(
2 θ

×≈  bits, where 

the number n  follows approximately a Poisson 
distribution. The probability that she does not know any 
bits at all and that the protocol must be restarted is 

NtP ))
2

sin(1(
2

0
θ

−≈ . The result is very similar to that 

in GQP [16]. Obviously, t  is equivalent to the previous 
k . For large N , we can also choosing an appropriate 

value of t  to ensure both Nn <<  and small 0P . The 

parameter t  affects the computational complexity rather 
than the communication complexity. Obviously, the 
computational complexity increases with the parameter t . 
Compared to JQP and GQP in Ref [14] and [16], our 
improved protocol shows a little increase in computational 
complexity. 

Only a N -bit raw key is long enough to generate an 
ideal final key in our improved protocol. That is to say, no 
matter how large the database is, we only need a raw key 
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with the same length of database according to our protocol. 
It greatly saves the sent photons. For instance, for a 

database 610=N and 4/πθ = , 1=k  and 9=t  

is a choice providing Alice with 4≈n  elements of the 
final key on average whereas the probability of failure is 
only about 4%. According to JQP and GQP, 9=k  and 

6109× photons must be sent in a perfect quantum 

channel. While only 610 photons are enough in 

accordance with our protocol. It greatly saves photons and 
brings about a significant decrease in communication 
complexity. So our protocol provides us with the optimal 
communication complexity and is much more efficient. 

There is an important advantage in our improved 
protocol. In GQP, Alice maybe be left with no known bit 
after step 6, the protocol has to be restarted, although the 
probability for this to occur can be kept small. If it 
happens, it will produce additional communication traffic. 
This situation can be avoided in our protocol. The 
communication participants can successfully achieve 
communication by repeating step 7′ . So our protocol is 
more flexible. 

 
5. Error and security analysis  
 
We now turn to error analysis and the question of 

which degree of privacy our protocol offers precisely. As 
an improved protocol, we will mainly discuss the security 
under the attacks the same as discussed in GQP. 

 
5.1 Error analysis 
 
Obviously in a practical QPQ protocol Alice’s final 

key bits may be different from Bob’s, which is caused by 
an outside eavesdropper’s attack or channel noise. Since 
the value of a finial conclusive key bit affects whether 
Alice can accurately decode the bit she is interested in or 
not, the error bit rate should be paid attention to. At the 
same time it is necessary to make certain whether the error 
rate varies with parameter θ . So we will also explore the 
impact of the parameter on the error rate. 

The value of a conclusive bit in the finial key is 

depended on the k  raw contributing bits. So we will 
discuss the error rate of a raw bit at first. 

Suppose that a state has been sent 〉′0|  and 

}0|,0{| 〉′〉  has been announced. Alice rules out the state 

〉′0|  and mistakes it for 〉0|  if and only if she obtains 

the result 〉′1|  which is orthogonal with the original state 

〉′0|  by measuring in the basis }1|,0{| 〉′〉′ . With noise 

present, the state will flip with a certain probability in the 

quantum channel. Let the probability of Alice obtaining 

the corresponding orthogonal state by measuring the sent 

state in the basis which it belongs to be δ . Obviously, the 

value of δ  does not depend on the parameter θ , and is 

just determined by the noise in the quantum channel. So 

the value of θ  will not affect the error in the 

communication. As Alice randomly chooses basis 

}1|,0{| 〉〉=B  or }1|,0{| 〉′〉′=′B  and the 

probabilities of the two events are equal, the error rate of a 

raw conclusive bit is δ
2
1

. When the number of error bits 

is even, it does not affect the correctness of the finial result. 

So the error rate η  of a finial conclusive bit satisfies: 

tt )
2
11(1)

2
1( δηδ −−<<  

Since we still have no effective way to perform error 
correction or privacy amplification to achieve high 
correctness of the final key in such a special QKD protocol 
(that is, Alice only gets parts of the whole key and Bob 
does not know which bits are obtained by Alice). The error 
rate η  to some extent reflects the correctness of the 

shared key bit. 
 
5.2. Security analysis 
 
We will consider its security from two aspects: 

database security and user privacy. 
Let us first discuss database security. In general one 

must assume that Alice disposes of a quantum memory 
and is hence not forced to measure directly as in step 2. 
Instead she can keep the photons and doesn’t measure 
them until step 7′ ends. Having obtained the permutation 

functions 1,,1, −= tjf j L , she can conclude which 

bits contribute a finial bit. Then she performs measurement. 
As analyzed in GQP, Alice can also perform the optimal 
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unambiguous state discrimination (USD) measurement 
[19], [20] and Helstrom’s minimal error-probability 
measurement. For Alice, she is almost in the same 
situation in GQP and our protocol with the only difference 
that the t  contributing raw bits are from the same string 
in our protocol. This does not make him better measure. 
So, under the same conditions, in our protocol we can 
achieve database security almost the same as that in GQP. 
We now consider user privacy. As we have discussed 

above, Bob randomly chooses permutation functions jf  . 

In fact, he can prepare them beforehand. This allows Bob 
to know which bits will act for a certain finial bit. This 
situation is just the same as that in GQP. As discussed in 
Ref.[16], Bob can not succeed in attacking without any 
error. 

In addition, the smaller the parameter θ , the higher 
the probability with which Bob can correctly guess the 
address of Alice’s query. So, we do not have to pursue a 
small θ  since θ  no longer affects the communication 
complexity in our protocol. We can choose an appropriate 
θ  (e.g., 4/πθ = ), such that our protocol achieves 
both database security and user privacy. The security of it 
relies on fundamental physical principles (the 
impossibility to deterministically discriminate 
nonorthogonal states, and the impossibility of 
superluminal communication). 

 
6. Conclusions 
 
In this paper we have presented a scheme to improve 

JQP and GQP in terms of communication complexity. In 
order to retain the security and privacy in our protocol, the 
raw key distribution phase keeps unchanged. In the 
post-processing phase, by randomly choosing permutation 
functions on the object N -bit string to generate strings 
served as auxiliary strings, we reduce the length of the raw 
key from kN  to N . This saves quantum sources and 
greatly reduces communication complexity of the protocol. 
Error analysis shows that the error rate is not affected by 
the parameter θ . In our protocol, we do not have to 
pursue a small θ  since θ  no longer affects the 
communication complexity. We can choose an appropriate 
θ  such that our protocol achieves both good database 

security and high user privacy. Furthermore, if the 
communication fails due to that the user is left with no 
known bit in the finial key, we can obtain a new finial key 
only by repeating step 7′ . So, the protocol can avoid 
being restarted. In comparison with JQP and GQP, our 
protocol offers better communication complexity without 
loss of security and privacy. Therefore, our protocol is 
more practical and flexible. 
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