
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 14, No. 5- 6, May – June 2012, p. 504 - 510

Improvement on private database queries based on the
quantum key distribution

D. S. SHEN, X. C. ZHUa*, W. P. MA, X. R. YIN, M. L. WANG

State Key Laboratory of ISN, Xidian University, Xi’an, China
aSchool of Information Management, Wuhan University, Wuhan, China

This paper presents a scheme to improve the private database query protocols proposed by Jakobi and Gao respectively. By
randomly choosing permutation functions to generate auxiliary strings, we reduce the length of the raw key from kN to N ,
which makes a significant decrease in communication complexity and saves quantum resources. Furthermore, the whole
protocol can avoid being restarted when the communication fails due to the user obtaining no bit in the finial key. The
communicating parties can obtain a new finial key and successfully achieve communication by randomly rechoosing
permutation functions. This is quite different from the previous protocols. The detailed analysis shows that our protocol can
provide better communication complexity without loss of security and privacy. Compared with the previous protocols, our
protocol is more practical and flexible.

(Received March 11, 2012; accepted June 6, 2012)

Keywords: Private information retrieval, Quantum key distribution, Communication complexity, Permutation functions

1. Introduction

A Symmetrically Private Information Retrieval (SPIR)

[1] protocol allows a database user to obtain information
from a database in a manner that prevents the database
from knowing which data is retrieved and the user from
obtaining extra information from database besides what
she or he wants to retrieve. It is a generalization of the
private information retrieval problem (PIR) [2] which
deals with user privacy alone. To make the whole problem
more simple, the database which is in Bob’s possession is
modeled as an N -bit string and the user, Alice, wants to
obtain the thi bit in the string, such that i remains
unknown to Bob. She knows in advance the address of that
bit in Bob’s database.

It has attracted much attention both in computer
science and in quantum information [3,4]. Classically,
there are several schemes for PIR [5-8] and SPIR [1].
Gertner [1] exhibited quite efficient share-randomness
SPIR schemes. However, the necessity of shared
randomness among multi-servers is a significant drawback,
since information-theoretic security requires new shared
randomness for each application of the scheme. User and
data privacy are apparently in conflict: the most
straightforward way to obtain user privacy is for Alice to
have Bob send her the entire database, leading to no data

privacy whatsoever. Conversely, techniques for
guaranteeing the server’s data privacy typically leave the
user vulnerable. So far, no efficient solutions in terms of
communication complexity [9] are known for SPIR. The
communication complexity is measured by the number of
bits transmitted between the user and the server per query.
One might hope that quantum mechanics could solve this
dilemma. Several quantum symmetrically private
information retrieval (QSPIR) schemes [10-13] were
proposed. The private information in Ref. [10] and [13] is
directly encoded in qubits and in the phase respectively.
Perfect though they are in theory, the two protocols are
difficult to implement because when large database is
concerned the dimension of the oracle operation will be
very high.

Jakobi et al. [14] recently proposed a new protocol
based on quantum key distribution (QKD), which is the
first practical quantum private query protocol and quite
different from the previous ones. The protocol can be
divided into two phases: the raw key distribution phase
and the post-processing phase. In the raw key distribution
phase, The SARG04 QKD scheme [15] is utilized to
generate asymmetric key served as a raw key between
Alice and Bob. In the post-processing phase, the raw key
string is diluted to generate the finial key which is used to
encrypt the whole database after a relative shift. By

Improvement on private database queries based on the quantum key distribution 505

introducing parameter θ which determines the sent
photons in the first phase, Gao et al. [16] extended Jakobi
et al’s protocol [14] to a general form. For simplicity,
suppose that Jakobi et al’s protocol [14] and Gao et al’s
protocol [16] are shortened as JQP and GQP respectively.
The main idea underlying GQP is completely identical to
JQP with the only difference that the sent photons are
adjustable.

In these two protocols, kN -bit raw key must be
created in order to generate a diluted finial key in the
post-processing phase. For example, when

610=N , 6=k will be appropriate in JQP. That means
that the length of the created raw key must be 6106× .
That is to say, the raw key string must be k times longer
than the database. The security parameter k increases
with the increase of N . Obviously, the value of the
parameter k affects the communication complexity.
They can obtain a smaller k and achieve lower
communication complexity by choosing a smaller

)4/0(πθθ << in GQP. However, the user privacy
decreases with decreasing the parameter

)2/0(πθθ << . Furthermore, if they pursue 1=k ,
θ will be very small for large N . That will not only
reduce the user privacy but also make its realization
technically difficult. From this we know that we can not
reduce the communication complexity effectively only by
adjusting the value of θ . In a word, both JQP and GQP
can achieve very good levels of privacy and security
which relies on fundamental physical principles, but
neither can provide a good communication complexity.
Especially for a large database, the drawback greatly
affects communication efficiency and its practical
application.

To achieve lower complexity and minimize the
communication cost, we present an effective scheme in
which pseudo-random strings generated by random
permutation functions are cleverly used to dilute the raw
key in the post-processing phase. We can achieve 1=k
no matter how large the database is. The detailed analysis
is given in the following sections.

2. Review of GQP

The basic idea of JQP [14] and GQP [16] is that it

uses QKD in combination with adequate post-processing

to generate an N -bit string fK that serves as an

oblivious key [17] for a database of N bits. For this

purpose, the key fK must meet the following conditions:
(1) Bob knows the key entirely; (2) Alice knows only a

few bits of fK -ideally exactly one (database security);
(3) Bob does not know which bits are known to Alice (user
privacy). Bob adds database and key bit-wise with a
relative shift chosen by Alice and sends her the encrypted
database. The relative shift is needed in order to ensure
that Alice’s bit of interest is encoded with an element of

fK she knows, so that she can decipher the bit and thus
receive the answer to her private query.

Since GQP is a generalization of JQP, we will give a
brief description of GQP and then present a technique to
improve it.

Step 1, Bob sends Alice a long random sequence of

qubits (e.g., photons) which are in states 〉0| , 〉1| , 〉′0|

and 〉′1| . States 〉0| and 〉1| code for 0, and states

〉′0| and 〉′1| correspond to bit value 1. Here

〉+〉=〉′ 1|sin0|cos0| θθ ,

.1|sin0|cos1| 〉−〉=〉′ θθ

The parameter)2/,0(πθ ∈ can be selected

continuously according to particular situations, which will
be demonstrated below.

Step 2, Alice measures each state in the basis

}1|,0{| 〉〉=B or }1|,0{| 〉′〉′=′B basis at random.

Obviously this measurement does not allow her to infer
the value of the bit sent by Bob.

Step 3, Alice announces what she has successfully
detected; lost or not detected photons are disregarded. It
does not allow Alice to cheat since she still has no
information on the sent bit values and can’t tell which
measurement result she wants. As a consequence, the
protocol is completely loss-independent.

Step 4, for each qubit that Alice has successfully
measured, Bob announces one bit 0 or 1, where 0

506 D. S. Shen, X. C. Zhu, W. P. Ma, X. R. Yin, M. L. Wang

represents the bit which is originally in the state 〉0| or
〉′0| , while 1 implies the qubit is 〉1| or 〉′1| .
Step 5, she interprets her measurement results of step

4. According to the basis she has chosen and the result she
has obtained, Alice can obtain the sent bit with a certain
probability. For example, if 〉′0| has been sent and 0 has
been declared, Alice can rule out 〉0| only if she has
measured in the basis B and obtained the result 〉1| .
Then she can conclude that the state is 〉′0| and the bit
value is 1. As a result, direct measurement as under step 2
will yield 2/sin 2 θ=p of conclusive results and

p−1 of inconclusive ones. Both conclusive and
inconclusive results are kept. So Alice and Bob now share
a raw key rK which is known entirely to Bob and partly
to Alice (she knows 2/sin 2 θ=p of the whole).

Step 6, they both execute postprocessing to the key.
The raw key rK must be of length Nk × (with k
being a security parameter). By cutting it into k
substrings of length N and adding them bitwise, both
parties generate an N -bit string of which Alice knows a
few bits at most (ideally exactly one).

Step 7, if Alice is left with no known bit after step 6,
the protocol has to be restarted. The probability for this to
occur can be kept small.

Step 8, Alice will know at least one element of it after
rK has been established correctly. Suppose she knows

the thj bit f
jK and wants to obtain the thi bit of the

database iX . In order to decrypt correctly Alice
announces the number ijs −= in advance to allow
Bob to encode the database by bitwise adding fK ,
shifted by s . This will make sure that the bit in which
Alice is interested is coded with a key element she knows
so that the private query can be completed.

They show that, the average number of the key bits
Alice obtains can be located on any fixed value the users
wanted for any database size by adjusting the value of θ.
And the parameter k is generally smaller (even

1=k can be achieved) when θ < π/4, which implies lower
complexity of both quantum and classical communications.
The scheme is completely loss-resistant since the
discarded bits contain no information about database or the
finial key. It achieved good database security and high user
privacy.

3. The improved scheme

The above protocol can be divided into two phases:

the raw key distribution phase and the post-processing
phase. Step 1 to 5 of the above protocol are similar with
B92 QKD protocol [18]. This remains in this paper and
only post-processing is modified.

According to the above protocol, the raw key string
must be k times longer than the database. This means
that Bob has to send at least Nk × photons to Alice. For
a given N , we can achieve a smaller k by choosing a
smaller parameter θ . But, as discussed in Ref. [16], the
smaller the parameter θ , the higher the probability with
which Bob can correctly guess the address of Alice’s query.
Furthermore, if they pursue 1=k , which means the
optimal communication complexity in our protocol, θ
will be very small for large N . This might make its
realization technically difficult. Therefore, 1>k is
needed when N is large in their protocol. From this we
know that we can not effectively reduce the
communication complexity only by adjusting the value
of θ .

On the other hand, the whole protocol has to be
restarted if the finial key string is generated with no bit
known for Alice. It, to a certain extent, also affects the
efficiency of communication.

To improve it, we present a simple technique in which
permutations are cleverly used to generate new strings to
dilute the raw key. The new protocol is described as
follows. Step 1 to 5 are the same as those in GQD above.

Step 6′ , when the created string is of length N ,
Bob stops sending photos. Let us denote the raw key as

X .
Step 7′ , Bob randomly chooses 1−t different

permutation functions)(XfY jj = and announces

them. Then they both perform these permutation functions
on X and obtain 1−t auxiliary strings

jY , 1,,1 −= tj L . They add bitwise the 1−t auxiliary

strings to the raw string and obtain a diluted finial key. In
order to dilute the raw key effectively, these permutation
functions should not be identical. This step is very
important for this paper and the details can be seen in the

Improvement on private database queries based on the quantum key distribution 507

following security analysis.
Step 8′ , if Alice is left with no known bit after step

6′ , the whole protocol does not have to be restarted. They
can return to step 7′ . By choosing randomly other
permutation functions, they can generate new 1−t

auxiliary strings ′
jY and obtain a new diluted finial

string. Otherwise, continue.
Step 9′ , it is the same as step 8 in section 2 above.

4. Discussion

Apparently, compared to GQP, the stage of key

distribution keeps unaltered and only post-processing
phase is improved in our scheme. As discussed in JQP and
GQP, Alice is always confronted with the problem of
discriminating two non-orthogonal quantum states, and
will hence always have incomplete knowledge on the raw
key. This lack of information is subsequently further
amplified by step 7′ .

In JQP and GQP, we may regard the first N -bit
substring as an object string, and the remaining 1−k
substrings as auxiliary strings which are used to dilute the
object string. So the inconclusive bits in the auxiliary
strings play a key role in the whole process. As designed in
JQP and GQP, the k substrings are truly random. In our
scheme, by performing different permutation functions

jf on the N -bit object string, we obtain 1−t

permutated strings served as auxiliary strings. The
permutated strings are pseudo-random. At first sight the
permutated strings seem not good enough since they are
not truly random. However, it should be noted that the
core of the post-processing is how to dilute the key.
Compared with the specific value of a conclusive bit in the
finial key, we are more concern about how many bits have
been diluted, which is very important for our protocol. In
fact, the following detailed analysis can show that it does
work well.

On one hand, the amount of information Bob can
obtain about the finial key in our protocol is the same as
that in GQP. Bob knows which bits in the auxiliary strings
will contribute a bit in the finial key. This is the same as
that in GQP, there is only difference that a raw bit will

contribute t finial key bits. Although he knows that the
relationship exists among the bits in the finial key. Since
he can not conclude a raw bit that Alice knows without
any error due to Alice’s random measurement, he can not
know precisely the corresponding bit in the finial key.

 On the other hand, the amount of information Alice
can obtain from the finial key in our protocol is almost the
same as that in GQP. As the bits in the raw object string

are random, no matter what the permutation functions jf

are, Alice can not obtain more information about each bit
from the permutated strings. Every inconclusive bit in the
permutated auxiliary strings will also make the
corresponding bit in the finial key inconclusive. That is to
say, for Alice, the degree of uncertainty about the
inconclusive bits in the finial key in both protocols is

almost the same. Owing to the permutation functions jf

which are randomly chosen by Bob, the object string can
also be well diluted in our protocol.

 Following the improved protocol, after adding
bitwise the permutated strings to the object string, Alice

will on average know tNn)
2

sin(
2 θ

×≈ bits, where

the number n follows approximately a Poisson
distribution. The probability that she does not know any
bits at all and that the protocol must be restarted is

NtP))
2

sin(1(
2

0
θ

−≈ . The result is very similar to that

in GQP [16]. Obviously, t is equivalent to the previous
k . For large N , we can also choosing an appropriate

value of t to ensure both Nn << and small 0P . The

parameter t affects the computational complexity rather
than the communication complexity. Obviously, the
computational complexity increases with the parameter t .
Compared to JQP and GQP in Ref [14] and [16], our
improved protocol shows a little increase in computational
complexity.

Only a N -bit raw key is long enough to generate an
ideal final key in our improved protocol. That is to say, no
matter how large the database is, we only need a raw key

508 D. S. Shen, X. C. Zhu, W. P. Ma, X. R. Yin, M. L. Wang

with the same length of database according to our protocol.
It greatly saves the sent photons. For instance, for a

database 610=N and 4/πθ = , 1=k and 9=t

is a choice providing Alice with 4≈n elements of the
final key on average whereas the probability of failure is
only about 4%. According to JQP and GQP, 9=k and

6109× photons must be sent in a perfect quantum

channel. While only 610 photons are enough in

accordance with our protocol. It greatly saves photons and
brings about a significant decrease in communication
complexity. So our protocol provides us with the optimal
communication complexity and is much more efficient.

There is an important advantage in our improved
protocol. In GQP, Alice maybe be left with no known bit
after step 6, the protocol has to be restarted, although the
probability for this to occur can be kept small. If it
happens, it will produce additional communication traffic.
This situation can be avoided in our protocol. The
communication participants can successfully achieve
communication by repeating step 7′ . So our protocol is
more flexible.

5. Error and security analysis

We now turn to error analysis and the question of

which degree of privacy our protocol offers precisely. As
an improved protocol, we will mainly discuss the security
under the attacks the same as discussed in GQP.

5.1 Error analysis

Obviously in a practical QPQ protocol Alice’s final

key bits may be different from Bob’s, which is caused by
an outside eavesdropper’s attack or channel noise. Since
the value of a finial conclusive key bit affects whether
Alice can accurately decode the bit she is interested in or
not, the error bit rate should be paid attention to. At the
same time it is necessary to make certain whether the error
rate varies with parameter θ . So we will also explore the
impact of the parameter on the error rate.

The value of a conclusive bit in the finial key is

depended on the k raw contributing bits. So we will
discuss the error rate of a raw bit at first.

Suppose that a state has been sent 〉′0| and

}0|,0{| 〉′〉 has been announced. Alice rules out the state

〉′0| and mistakes it for 〉0| if and only if she obtains

the result 〉′1| which is orthogonal with the original state

〉′0| by measuring in the basis }1|,0{| 〉′〉′ . With noise

present, the state will flip with a certain probability in the

quantum channel. Let the probability of Alice obtaining

the corresponding orthogonal state by measuring the sent

state in the basis which it belongs to be δ . Obviously, the

value of δ does not depend on the parameter θ , and is

just determined by the noise in the quantum channel. So

the value of θ will not affect the error in the

communication. As Alice randomly chooses basis

}1|,0{| 〉〉=B or }1|,0{| 〉′〉′=′B and the

probabilities of the two events are equal, the error rate of a

raw conclusive bit is δ
2
1

. When the number of error bits

is even, it does not affect the correctness of the finial result.

So the error rate η of a finial conclusive bit satisfies:

tt)
2
11(1)

2
1(δηδ −−<<

Since we still have no effective way to perform error
correction or privacy amplification to achieve high
correctness of the final key in such a special QKD protocol
(that is, Alice only gets parts of the whole key and Bob
does not know which bits are obtained by Alice). The error
rate η to some extent reflects the correctness of the

shared key bit.

5.2. Security analysis

We will consider its security from two aspects:

database security and user privacy.
Let us first discuss database security. In general one

must assume that Alice disposes of a quantum memory
and is hence not forced to measure directly as in step 2.
Instead she can keep the photons and doesn’t measure
them until step 7′ ends. Having obtained the permutation

functions 1,,1, −= tjf j L , she can conclude which

bits contribute a finial bit. Then she performs measurement.
As analyzed in GQP, Alice can also perform the optimal

Improvement on private database queries based on the quantum key distribution 509

unambiguous state discrimination (USD) measurement
[19], [20] and Helstrom’s minimal error-probability
measurement. For Alice, she is almost in the same
situation in GQP and our protocol with the only difference
that the t contributing raw bits are from the same string
in our protocol. This does not make him better measure.
So, under the same conditions, in our protocol we can
achieve database security almost the same as that in GQP.
We now consider user privacy. As we have discussed

above, Bob randomly chooses permutation functions jf .

In fact, he can prepare them beforehand. This allows Bob
to know which bits will act for a certain finial bit. This
situation is just the same as that in GQP. As discussed in
Ref.[16], Bob can not succeed in attacking without any
error.

In addition, the smaller the parameter θ , the higher
the probability with which Bob can correctly guess the
address of Alice’s query. So, we do not have to pursue a
small θ since θ no longer affects the communication
complexity in our protocol. We can choose an appropriate
θ (e.g., 4/πθ =), such that our protocol achieves
both database security and user privacy. The security of it
relies on fundamental physical principles (the
impossibility to deterministically discriminate
nonorthogonal states, and the impossibility of
superluminal communication).

6. Conclusions

In this paper we have presented a scheme to improve

JQP and GQP in terms of communication complexity. In
order to retain the security and privacy in our protocol, the
raw key distribution phase keeps unchanged. In the
post-processing phase, by randomly choosing permutation
functions on the object N -bit string to generate strings
served as auxiliary strings, we reduce the length of the raw
key from kN to N . This saves quantum sources and
greatly reduces communication complexity of the protocol.
Error analysis shows that the error rate is not affected by
the parameter θ . In our protocol, we do not have to
pursue a small θ since θ no longer affects the
communication complexity. We can choose an appropriate
θ such that our protocol achieves both good database

security and high user privacy. Furthermore, if the
communication fails due to that the user is left with no
known bit in the finial key, we can obtain a new finial key
only by repeating step 7′ . So, the protocol can avoid
being restarted. In comparison with JQP and GQP, our
protocol offers better communication complexity without
loss of security and privacy. Therefore, our protocol is
more practical and flexible.

Acknowledgments

We are grateful to the anonymous reviewer for helpful

comments. This work was supported by National Science
Foundation of China under grant No. 61072140 and
60773002, the 111 Project under grant No. B08038, and
the Specialized Research Fund for the Doctoral Program
of Higher Education under grant No. 20100203110003.

References

 [1] Y. Gertner et al., J. Comput. Syst. Sci.,
 60, 592 (2000).
 [2] B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan,
 Private information retrieval, J. ACM
 45(6), 965C (1998), Earlier version in Proc. FOCS95.
 [3] I. Kerenidis and R. de Wolf, J. Comput. Syst. Sci.,
 69, 395 (2004).
 [4] I. Kerenidis and R. de Wolf, Info. Proc. Lett.,
 90, 109 (2004).
 [5] A. Beimel, Y. Ishai, E. Kushilevitz, J. Raymond,
 Breaking the O(n1/(2k.1)) barrier for
 information-theoretic private information retrieval,
 in: Proceedings of 43rd IEEE FOCS, 2002, pp. 261C.
 [6] C.Gentry and Z. Ramzan, in Proc. 32nd ICALP
 (Springer- Verlag, Berlin,2005), p. 803;
 [7] S.Yekhanin, Technical Report No. ECCC
 TR06-127, 2006.
 [8] E.Kushilevitz and R. Ostrovsky, in Proc. 38th IEEE
 Symposium FOCS97 (1997), p. 364.
 [9] A. Ambainis, in Proceedings of the 24th ICALP, Lect.
 Notes Comput. Sci. (Springer-Verlag, Berlin,),
 1256, 401 (1997).
[10] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev.
 Lett., 100, 230502 (2008).

510 D. S. Shen, X. C. Zhu, W. P. Ma, X. R. Yin, M. L. Wang

[11] V. Giovannetti, S. Lloyd, L. Maccone,
 IEEE Trans. Inf. Theo., 56, 34465 (2010).
[12] F. De Martini, V. Giovannetti, S. Lloyd, L. Maccone,
 E. Nagali, L. Sansoni, and Fabio Sciarrino, Phys.
 Rev. A, 80, 010302 (2009).
[13] L.Olejnik, Phys. Rev. A, 84, 022313 (2011).
[14] M.Jakobi, C.Simon, N.Gisin,J-D.Bancal, Phys. Rev.
 A, 83(2), 022301 (2011).
[15] V. Scarani, A. Ac´ in, G. Ribordy, N. Gisin, Phys.
 Rev. Lett., 92, 057901 (2004).
[16] F.Gao, B.Liu and Q-Y.Wen, quant-ph/1111.
 1511v1, (2011).

[17] D. Beaver, Lecture Notes in Computer Science,
 Vol. 963 (Springer, London, 1995), p. 97.
[18] C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).
[19] P. Raynal, e-print arXiv: quant-ph/0611133.
[20] U. Herzog and J. A. Bergou, Phys. Rev.
 A 71, 050301 (2005).

*Corresponding author: xhongtan@yahoo.cn

